
Gavin Mogan

@halkeye

http://www.gavinmogan.com

Code Monkey @ Sauce Labs

1

Hi

I'm Gavin and I work at one of tonight's sponsors, Sauce Labs.

https://twitter.com/halkeye
http://www.gavinmogan.com/

Why not testing?

2

WHY NOT TESTING???

Okay I just wanted an excuse to use zoidberg and futurama gifs

But first a little background about me.

First Job
Low pay
Develop Live
No source control
No testing

Gross

3

After dropping out of bcit, I pretty much took the first dev job I could find.

It was everyone's worst nightmare. Low pay, coding live on the production server, no source control, and while I didn't realize it was a big deal at the time, no testing.

So many files and folders ending in dot bak.

use Inhouse::Library;
use JSON;

$user = Inhouse::Library::createUser({
 username => "zoidberg",
 password => "doctor"
});

print JSON::to_json($user);

gavin.pl

const Users = require('./models/users.js');

Users.createUser({
 username => "zoidberg",
 password => "doctor"
}).then(function(user) {
 console.log($user);
});

gavin.js

4

At the time, I got in the habit of creating gavin files to test things locally before attempting to deploy them.

Little did I know this would lead down a path of testing.

Gavin asks you

5

Okay.. Time for me to ask you a question.

Hands up if you develop on a daily basis?

Okay, keep your hands up if you actually write tests for your code.

(Gavin draws the best)

6

So moving into a bit more formalized topic...

Here we have the testing pyramid.
You can find many variations of the same thing but this one I lovingly created.

The idea is that you spend most of your time writing unit tests. They are discrete chunks of tests that confirm small pieces of code.

Next up you have integration tests. Those typically will reach out to other systems. They are slower. Take more time to setup.

Lastly you have the complete end to end tests. They are the slowest to run, so you don't want to do them all the time.
Sauce Labs actually specializes in this layer when you are doing web testing.

Indirect Pros
Learning Codebases

New Hire can write tests
Tests are always up to date when compared to
documentation
When/why is this code supposed to be used.

7

So why should you write tests?

When I was a developer at telus, I was quickly put on a legacy project and was told to get up to speed.

I was lucky enough to convince them to spend a couple weeks writing tests.

By the time I was finished, not only did I know all the models and db schema inside and out, but I actually found a few bugs and dead code.

"We need time to test"
Often leads to features being shipped
that have never been used
Blame others (QA) when things don't
get caught

Why not testing first?
Helps you think about design
Lets you fail fast
Write failing test first, then code
Refactoring later isn't scary

8

This is actually one of my biggest pet peeves. If you haven't written any tests, its really not done yet. So time shouldn't be a factor. But I do understand time
crunches and project managers.

I'm by no means perfect, I leave a bunch of testing till late in my development. But my development these days tends to span a day or two, so testing is still really
early considering.

There are some ways to convince people though. There are tons of studies on how writing tests actually increases development speed. I feel like it has a lot to do
with peace of mind. Don't need to be afraid of trying something because you have a safety net of tests.

Failing fast means you can try something without working on all the boiler plate around it.

Add function takes two numbers, 1 and 2, does it equal 3? Cool works, does it throw an exception? boo

Failing tests help prevent false positives. Testing javascript callbacks especially lead to this.

9No, no reason, last few slides have just had a ton of text.

How do I run tests?

grunt/gulp/etc
mocha (with watch)
qunit
many many more

Javascript Ruby
guard
rake
rspec
minitest
unittest
many many moreIDEs

IdeaJ
Sublime/Atom
many many more

Python
nose
unittests
many many more

10

How do I run tests?

The list of tooling and frameworks is ever growing bigger. I can't stress enough there's no right way of testing, just the way that works the perfect or best for you.

Generally there are two categories. Often frameworks will fall into both but not always.

Grunt, gulp, and guard all specialize in running tasks, so they are great at re-running the entire test suite when files are changed. I personally have mine setup to
beep at me when things fail so I don't have to keep an eye on it.

Mocha, qunit, rspec, and others are more the testing frameworks. They are how you write the tests. How you see the results, etc.

11Here you can mocha running in javascript and outputting results. Very simple

No, more automated!

Jenkins
Travis-ci (.org)
Circle CI
Bamboo
Team City
Visual Studio Online (VSTS)
more more more

12

Lots of people run automated tests. Sometimes referred to as continuous integration.

My personal favourite two are travis ci and jenkins.

Travis-ci is great for open source projects. Its 100% free, and you can do whatever you want.

Jenkins is better for when you have a large collection of projects.

Sauce labs, as well as myself for my own person projects, use a mixture of both.

Where do I start testing

Convert simple scripts into tests
Generally anything you care about
API Return values
Public methods
Small discreet units

Don't forget bugs

13

As I said earlier. Start by taking a script or segment you'd normally try out on its own, and make it into its own full test.

On my team at sauce, for our rest apis. If its in a test, we are allow to use it in other components. It's considered a guaranteed return value.

I originally started with bugs. If I had a bug report, I'd make a test for it so I could prove how it happened, and help prevent it from happening again in the future.

In my opinion, Its very tempting to setup a complete environment, fake users, fake posts, fake everything. But the bigger the more complicated the test the harder it
will to maintain.

Big tests are really good, but they can come later.

That doesn't mean no bugs occur, but its a start.

At the start, there's really no wrong way of testing. When you start to have a lot of tests, then it makes sense to worry about how long they take, and combining if
necessary.

How do I test?
Really easy.

1. Run some code
2. Check the value

test "should save article with title" do
 article = Article.new(title => "Gavin's Article")
 assert article.save
end

test "should load with the same title" do
 # create new article
 created_article = Article.create(title => "Gavin's Better Article")
 assert_not_null created_article
 # load from DB
 loaded_article = Article.find(created_article.id)
 # check values
 assert_not_null loaded_article
 assert_equal loaded_article.title, "Gavin's Better Article"
end

14

Okay, so lets see how you actually test.

Step 1, run some code
Step 2, Check the value.

As you can see here, testing actually can be quite simple.

When we refactored the whole system's database engine. We knew that inputting a certain set of data, we'd get a certain set back out. How it worked in between
wasn't important.

E2E Tests
Usually involve setting up a complete environment
Websites will actually automate browsers for testing
Mobile apps will test in emulators or real devices with
real apps
Talking to a fully setup backend. Hopefully not
production code, but certainly possible

15

Example
https://github.com/saucelabs-sample-test-

frameworks/JS-Mocha-WD.js

16Okay, How many of you write UI or e2e tests?

https://github.com/saucelabs-sample-test-frameworks/JS-Mocha-WD.js

More Information
Selenium - Website Testing / Automation

http://www.seleniumhq.org/
Appium - Mobile (And more) / Automation

http://appium.io/
Android
IOS
Universal Windows Platform

Xamarin
(Let other speaker talk about it)

17I have a bunch of stickers for saucelabs and appium

Thanks

@halkeye

http://www.gavinmogan.com

Gavin Mogan

18

Thanks for your time everyone. I hope people learned at least something. Feel free to hit me up by email, or on twitter, or come up and say hi after all the talks.

I'll try and make sure I post my slides to the meetup asap.

https://twitter.com/halkeye
http://www.gavinmogan.com/

